����JFIFXX�����    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222����"��4�� ���,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu���#ډb���_�N�?��wQ���5-�~�I���8����TK<5o�Iv-�����k�_U_�����~b�M��d����Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F�?_�'ϔ��_�Ջt��=||I ��6�έ"�����D���/[�k�9���Y�8ds|\���Ҿp6�Ҵ���]��.����6�z<�v��@]�i%��$j��~�g��J>��no����pM[me�i$[����s�o�ᘨ�˸ nɜG-�ĨU�ycP�3.DB�li�;��hj���x7Z^�N�h������N3u{�:j�x�힞��#M&��jL P@_���� P��&��o8������9�����@Sz6�t7#O�ߋ �s}Yf�T���lmr����Z)'N��k�۞p����w\�Tȯ?�8`�O��i{wﭹW�[�r�� ��Q4F�׊���3m&L�=��h3����z~��#�\�l :�F,j@�� ʱ�wQT����8�"kJO���6�֚l����}���R�>ډK���]��y����&����p�}b��;N�1�m�r$�|��7�>e�@B�TM*-iH��g�D�)� E�m�|�ؘbҗ�a��Ҿ����t4���o���G��*oCN�rP���Q��@z,|?W[0�����:�n,jWiE��W��$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S����VN;�}�s?.����� w�9��˟<���Mq4�Wv'��{)0�1mB��V����W[�����8�/<� �%���wT^�5���b��)iM� pg�N�&ݝ��VO~�q���u���9� ����!��J27����$O-���! �:�%H��� ـ����y�ΠM=t{!S�� oK8������t<����è:a������[�����ա�H���~��w��Qz`�po�^ ����Q��n� �,uu�C�$ ^���,������8�#��:�6��e�|~���!�3�3.�\0��q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�<���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y�|�y��� ~�6�@c��1vOp�Ig����4��l�OD���L����� R���c���j�_�uX6��3?nk��Wy�f;^*B� ��@�~a�`��Eu������+���6�L��.ü>��}y���}_�O�6�͐�:�YrG�X��kG�����l^w���~㒶sy��Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2��#I/�׍qz��^t�̔���b�Yz4x���t�){ OH��+(E��A&�N�������XT��o��"�XC��'���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�|Lp�d�H��}�(�.|����k��c4^�"�����Z?ȕ ��a<�L�!039C� �Eu�C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf���M}7����]����s2tcS{�\icTx;�\��7K���P���ʇ Z O-��~��c>"��?�������P��E��O�8��@�8��G��Q�g�a�Վ���󁶠�䧘��_%#r�>�1�z�a��eb��qcPѵ��n���#L��� =��׀t� L�7�`��V���A{�C:�g���e@�w1 Xp3�c3�ġ����p��M"'-�@n4���fG��B3�DJ�8[Jo�ߐ���gK)ƛ��$���� ���8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`���?��K����QK�d����B`�s}�>���`��*�>��,*@J�d�oF*����弝��O}�k��s��]��y�ߘ��c1G�V���<=�7��7����6�q�PT��tXԀ�!9*4�4Tހ3XΛex�46���Y��D ����� �BdemDa����\�_l,��G�/���֌7���Y�](�xTt^%�GE�����4�}bT���ڹ�����;Y)���B�Q��u��>J/J �⮶.�XԄ��j�ݳ�+E��d ��r�5�_D�1 ��o�� �B�x�΢�#���<��W�����8���R6�@g�M�.��� dr�D��>(otU��@x=��~v���2� ӣ�d�oBd��3�eO�6�㣷�����ݜ6��6Y��Qz`��S��{���\P�~z m5{J/L��1������<�e�ͅPu�b�]�ϔ���'������f�b� Zpw��c`"��i���BD@:)ִ�:�]��hv�E�w���T�l��P���"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u�)]կ�����7x���s�M�-<ɯ�c��r�v�����@��$�ޮ}lk���a���'����>x��O\�ZFu>�����ck#��&:��`�$�ai�>2Δ����l���oF[h��lE�ܺ�Πk:)���`�� $[6�����9�����kOw�\|���8}������ބ:��񶐕��I�A1/�=�2[�,�!��.}gN#�u����b��� ~��݊��}34q����d�E��Lc��$��"�[q�U�硬g^��%B �z���r�pJ�ru%v\h1Y�ne`ǥ:g���pQM~�^�Xi� ��`S�:V29.�P���V�?B�k�� AEvw%�_�9C�Q����wKekPؠ�\�;Io d�{ ߞo�c1eP����\� `����E=���@K<�Y���eڼ�J���w����{av�F�'�M�@/J��+9p���|]�����Iw &`��8���&M�hg��[�{��Xj��%��Ӓ�$��(����ʹN���<>�I���RY���K2�NPlL�ɀ)��&e����B+ь����( � �JTx���_?EZ� }@ 6�U���뙢ط�z��dWI�n` D����噥�[��uV��"�G&Ú����2g�}&m��?ċ�"����Om#��������� ��{�ON��"S�X��Ne��ysQ���@Fn��Vg���dX�~nj�]J�<�K]:��FW��b�������62�=��5f����JKw��bf�X�55��~J �%^����:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v���g�8�1��f24;�V���ǔ�)����9���1\��c��v�/'Ƞ�w�������$�4�R-��t���� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃������A��20�c#��@ 0!1@AP"#2Q`$3V�%45a6�FRUq��� ����^7ׅ,$n�������+��F�`��2X'��0vM��p�L=������5��8������u�p~���.�`r�����\���O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;������S�T���1���i[U�ɵz�]��U)V�S6���3$K{�ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u�!��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� ���D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v�����멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$�JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4�[�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ�dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il��d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J��oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.���3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R=X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N�����#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%���JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$���L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����)�H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>�dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\�y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~������Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7��ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz��)�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!)'��8Ϣ�ٔ��ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'�L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���(}��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3�������QT��a����x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3�,#c�co��q�a)*Pt����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O���������m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l�O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m���PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q������~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~�|,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)`7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ����}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i����>J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q��nxҍ!U�f�!eh�i�2�m���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{/ �?�͟��|1�:�#g��W�>$����d��J��d�B��=��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H����O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l����l�cGs�ځ�������y�Ac�����\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6����N6�q������N ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td�� ?���N����a��3��m���C���w��������xA�m�q�m���m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4���r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0������u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ����V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�����Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q�(v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9��3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M����A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#yw��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa����Q�#� WeF��ŮNj�p�J* mQ�N����*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]��陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv:��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WPw���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp�BGv[]�u�Ov���0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R��� ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`(�>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG��{+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�>e]�����Q�r�:����g�,i"�����ԩA�*M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f�����֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ���˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)��h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~������ G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W�I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��BS�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c���]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪�\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W�����6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}�����6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@�P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6�����m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw�k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ����mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e��R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1[y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN��ĕ��0 !01@Q"2AaPq3BR������?���@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j�ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^���ԯ̾9Z��F��������n��1��� ��]�[��)�'������:�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0��;_��3 !01"@AQa2Pq#3BR������?��ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6����������4B>��o��](��$B���m�����a�!=��?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)����I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a�84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b��$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7��k�� 403WebShell
403Webshell
Server IP : 198.54.115.249  /  Your IP : 216.73.216.150
Web Server : LiteSpeed
System : Linux server66.web-hosting.com 4.18.0-553.44.1.lve.el8.x86_64 #1 SMP Thu Mar 13 14:29:12 UTC 2025 x86_64
User : digigcnj ( 11081)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/core/tests/test_simd.py
# NOTE: Please avoid the use of numpy.testing since NPYV intrinsics
# may be involved in their functionality.
import pytest, math, re
import itertools
import operator
from numpy.core._simd import targets, clear_floatstatus, get_floatstatus
from numpy.core._multiarray_umath import __cpu_baseline__

def check_floatstatus(divbyzero=False, overflow=False,
                      underflow=False, invalid=False,
                      all=False):
    #define NPY_FPE_DIVIDEBYZERO  1
    #define NPY_FPE_OVERFLOW      2
    #define NPY_FPE_UNDERFLOW     4
    #define NPY_FPE_INVALID       8
    err = get_floatstatus()
    ret = (all or divbyzero) and (err & 1) != 0
    ret |= (all or overflow) and (err & 2) != 0
    ret |= (all or underflow) and (err & 4) != 0
    ret |= (all or invalid) and (err & 8) != 0
    return ret

class _Test_Utility:
    # submodule of the desired SIMD extension, e.g. targets["AVX512F"]
    npyv = None
    # the current data type suffix e.g. 's8'
    sfx  = None
    # target name can be 'baseline' or one or more of CPU features
    target_name = None

    def __getattr__(self, attr):
        """
        To call NPV intrinsics without the attribute 'npyv' and
        auto suffixing intrinsics according to class attribute 'sfx'
        """
        return getattr(self.npyv, attr + "_" + self.sfx)

    def _x2(self, intrin_name):
        return getattr(self.npyv, f"{intrin_name}_{self.sfx}x2")

    def _data(self, start=None, count=None, reverse=False):
        """
        Create list of consecutive numbers according to number of vector's lanes.
        """
        if start is None:
            start = 1
        if count is None:
            count = self.nlanes
        rng = range(start, start + count)
        if reverse:
            rng = reversed(rng)
        if self._is_fp():
            return [x / 1.0 for x in rng]
        return list(rng)

    def _is_unsigned(self):
        return self.sfx[0] == 'u'

    def _is_signed(self):
        return self.sfx[0] == 's'

    def _is_fp(self):
        return self.sfx[0] == 'f'

    def _scalar_size(self):
        return int(self.sfx[1:])

    def _int_clip(self, seq):
        if self._is_fp():
            return seq
        max_int = self._int_max()
        min_int = self._int_min()
        return [min(max(v, min_int), max_int) for v in seq]

    def _int_max(self):
        if self._is_fp():
            return None
        max_u = self._to_unsigned(self.setall(-1))[0]
        if self._is_signed():
            return max_u // 2
        return max_u

    def _int_min(self):
        if self._is_fp():
            return None
        if self._is_unsigned():
            return 0
        return -(self._int_max() + 1)

    def _true_mask(self):
        max_unsig = getattr(self.npyv, "setall_u" + self.sfx[1:])(-1)
        return max_unsig[0]

    def _to_unsigned(self, vector):
        if isinstance(vector, (list, tuple)):
            return getattr(self.npyv, "load_u" + self.sfx[1:])(vector)
        else:
            sfx = vector.__name__.replace("npyv_", "")
            if sfx[0] == "b":
                cvt_intrin = "cvt_u{0}_b{0}"
            else:
                cvt_intrin = "reinterpret_u{0}_{1}"
            return getattr(self.npyv, cvt_intrin.format(sfx[1:], sfx))(vector)

    def _pinfinity(self):
        return float("inf")

    def _ninfinity(self):
        return -float("inf")

    def _nan(self):
        return float("nan")

    def _cpu_features(self):
        target = self.target_name
        if target == "baseline":
            target = __cpu_baseline__
        else:
            target = target.split('__') # multi-target separator
        return ' '.join(target)

class _SIMD_BOOL(_Test_Utility):
    """
    To test all boolean vector types at once
    """
    def _nlanes(self):
        return getattr(self.npyv, "nlanes_u" + self.sfx[1:])

    def _data(self, start=None, count=None, reverse=False):
        true_mask = self._true_mask()
        rng = range(self._nlanes())
        if reverse:
            rng = reversed(rng)
        return [true_mask if x % 2 else 0 for x in rng]

    def _load_b(self, data):
        len_str = self.sfx[1:]
        load = getattr(self.npyv, "load_u" + len_str)
        cvt = getattr(self.npyv, f"cvt_b{len_str}_u{len_str}")
        return cvt(load(data))

    def test_operators_logical(self):
        """
        Logical operations for boolean types.
        Test intrinsics:
            npyv_xor_##SFX, npyv_and_##SFX, npyv_or_##SFX, npyv_not_##SFX,
            npyv_andc_b8, npvy_orc_b8, nvpy_xnor_b8
        """
        data_a = self._data()
        data_b = self._data(reverse=True)
        vdata_a = self._load_b(data_a)
        vdata_b = self._load_b(data_b)

        data_and = [a & b for a, b in zip(data_a, data_b)]
        vand = getattr(self, "and")(vdata_a, vdata_b)
        assert vand == data_and

        data_or = [a | b for a, b in zip(data_a, data_b)]
        vor = getattr(self, "or")(vdata_a, vdata_b)
        assert vor == data_or

        data_xor = [a ^ b for a, b in zip(data_a, data_b)]
        vxor = getattr(self, "xor")(vdata_a, vdata_b)
        assert vxor == data_xor

        vnot = getattr(self, "not")(vdata_a)
        assert vnot == data_b

        # among the boolean types, andc, orc and xnor only support b8
        if self.sfx not in ("b8"):
            return

        data_andc = [(a & ~b) & 0xFF for a, b in zip(data_a, data_b)]
        vandc = getattr(self, "andc")(vdata_a, vdata_b)
        assert data_andc == vandc

        data_orc = [(a | ~b) & 0xFF for a, b in zip(data_a, data_b)]
        vorc = getattr(self, "orc")(vdata_a, vdata_b)
        assert data_orc == vorc

        data_xnor = [~(a ^ b) & 0xFF for a, b in zip(data_a, data_b)]
        vxnor = getattr(self, "xnor")(vdata_a, vdata_b)
        assert data_xnor == vxnor

    def test_tobits(self):
        data2bits = lambda data: sum([int(x != 0) << i for i, x in enumerate(data, 0)])
        for data in (self._data(), self._data(reverse=True)):
            vdata = self._load_b(data)
            data_bits = data2bits(data)
            tobits = self.tobits(vdata)
            bin_tobits = bin(tobits)
            assert bin_tobits == bin(data_bits)

    def test_pack(self):
        """
        Pack multiple vectors into one
        Test intrinsics:
            npyv_pack_b8_b16
            npyv_pack_b8_b32
            npyv_pack_b8_b64
        """
        if self.sfx not in ("b16", "b32", "b64"):
            return
        # create the vectors
        data = self._data()
        rdata = self._data(reverse=True)
        vdata = self._load_b(data)
        vrdata = self._load_b(rdata)
        pack_simd = getattr(self.npyv, f"pack_b8_{self.sfx}")
        # for scalar execution, concatenate the elements of the multiple lists
        # into a single list (spack) and then iterate over the elements of
        # the created list applying a mask to capture the first byte of them.
        if self.sfx == "b16":
            spack = [(i & 0xFF) for i in (list(rdata) + list(data))]
            vpack = pack_simd(vrdata, vdata)
        elif self.sfx == "b32":
            spack = [(i & 0xFF) for i in (2*list(rdata) + 2*list(data))]
            vpack = pack_simd(vrdata, vrdata, vdata, vdata)
        elif self.sfx == "b64":
            spack = [(i & 0xFF) for i in (4*list(rdata) + 4*list(data))]
            vpack = pack_simd(vrdata, vrdata, vrdata, vrdata,
                               vdata,  vdata,  vdata,  vdata)
        assert vpack == spack

    @pytest.mark.parametrize("intrin", ["any", "all"])
    @pytest.mark.parametrize("data", (
        [-1, 0],
        [0, -1],
        [-1],
        [0]
    ))
    def test_operators_crosstest(self, intrin, data):
        """
        Test intrinsics:
            npyv_any_##SFX
            npyv_all_##SFX
        """
        data_a = self._load_b(data * self._nlanes())
        func = eval(intrin)
        intrin = getattr(self, intrin)
        desired = func(data_a)
        simd = intrin(data_a)
        assert not not simd == desired

class _SIMD_INT(_Test_Utility):
    """
    To test all integer vector types at once
    """
    def test_operators_shift(self):
        if self.sfx in ("u8", "s8"):
            return

        data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        for count in range(self._scalar_size()):
            # load to cast
            data_shl_a = self.load([a << count for a in data_a])
            # left shift
            shl = self.shl(vdata_a, count)
            assert shl == data_shl_a
            # load to cast
            data_shr_a = self.load([a >> count for a in data_a])
            # right shift
            shr = self.shr(vdata_a, count)
            assert shr == data_shr_a

        # shift by zero or max or out-range immediate constant is not applicable and illogical
        for count in range(1, self._scalar_size()):
            # load to cast
            data_shl_a = self.load([a << count for a in data_a])
            # left shift by an immediate constant
            shli = self.shli(vdata_a, count)
            assert shli == data_shl_a
            # load to cast
            data_shr_a = self.load([a >> count for a in data_a])
            # right shift by an immediate constant
            shri = self.shri(vdata_a, count)
            assert shri == data_shr_a

    def test_arithmetic_subadd_saturated(self):
        if self.sfx in ("u32", "s32", "u64", "s64"):
            return

        data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        data_adds = self._int_clip([a + b for a, b in zip(data_a, data_b)])
        adds = self.adds(vdata_a, vdata_b)
        assert adds == data_adds

        data_subs = self._int_clip([a - b for a, b in zip(data_a, data_b)])
        subs = self.subs(vdata_a, vdata_b)
        assert subs == data_subs

    def test_math_max_min(self):
        data_a = self._data()
        data_b = self._data(self.nlanes)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        data_max = [max(a, b) for a, b in zip(data_a, data_b)]
        simd_max = self.max(vdata_a, vdata_b)
        assert simd_max == data_max

        data_min = [min(a, b) for a, b in zip(data_a, data_b)]
        simd_min = self.min(vdata_a, vdata_b)
        assert simd_min == data_min

    @pytest.mark.parametrize("start", [-100, -10000, 0, 100, 10000])
    def test_reduce_max_min(self, start):
        """
        Test intrinsics:
            npyv_reduce_max_##sfx
            npyv_reduce_min_##sfx
        """
        vdata_a = self.load(self._data(start))
        assert self.reduce_max(vdata_a) == max(vdata_a)
        assert self.reduce_min(vdata_a) == min(vdata_a)


class _SIMD_FP32(_Test_Utility):
    """
    To only test single precision
    """
    def test_conversions(self):
        """
        Round to nearest even integer, assume CPU control register is set to rounding.
        Test intrinsics:
            npyv_round_s32_##SFX
        """
        features = self._cpu_features()
        if not self.npyv.simd_f64 and re.match(r".*(NEON|ASIMD)", features):
            # very costly to emulate nearest even on Armv7
            # instead we round halves to up. e.g. 0.5 -> 1, -0.5 -> -1
            _round = lambda v: int(v + (0.5 if v >= 0 else -0.5))
        else:
            _round = round
        vdata_a = self.load(self._data())
        vdata_a = self.sub(vdata_a, self.setall(0.5))
        data_round = [_round(x) for x in vdata_a]
        vround = self.round_s32(vdata_a)
        assert vround == data_round

class _SIMD_FP64(_Test_Utility):
    """
    To only test double precision
    """
    def test_conversions(self):
        """
        Round to nearest even integer, assume CPU control register is set to rounding.
        Test intrinsics:
            npyv_round_s32_##SFX
        """
        vdata_a = self.load(self._data())
        vdata_a = self.sub(vdata_a, self.setall(0.5))
        vdata_b = self.mul(vdata_a, self.setall(-1.5))
        data_round = [round(x) for x in list(vdata_a) + list(vdata_b)]
        vround = self.round_s32(vdata_a, vdata_b)
        assert vround == data_round

class _SIMD_FP(_Test_Utility):
    """
    To test all float vector types at once
    """
    def test_arithmetic_fused(self):
        vdata_a, vdata_b, vdata_c = [self.load(self._data())]*3
        vdata_cx2 = self.add(vdata_c, vdata_c)
        # multiply and add, a*b + c
        data_fma = self.load([a * b + c for a, b, c in zip(vdata_a, vdata_b, vdata_c)])
        fma = self.muladd(vdata_a, vdata_b, vdata_c)
        assert fma == data_fma
        # multiply and subtract, a*b - c
        fms = self.mulsub(vdata_a, vdata_b, vdata_c)
        data_fms = self.sub(data_fma, vdata_cx2)
        assert fms == data_fms
        # negate multiply and add, -(a*b) + c
        nfma = self.nmuladd(vdata_a, vdata_b, vdata_c)
        data_nfma = self.sub(vdata_cx2, data_fma)
        assert nfma == data_nfma
        # negate multiply and subtract, -(a*b) - c
        nfms = self.nmulsub(vdata_a, vdata_b, vdata_c)
        data_nfms = self.mul(data_fma, self.setall(-1))
        assert nfms == data_nfms
        # multiply, add for odd elements and subtract even elements.
        # (a * b) -+ c
        fmas = list(self.muladdsub(vdata_a, vdata_b, vdata_c))
        assert fmas[0::2] == list(data_fms)[0::2]
        assert fmas[1::2] == list(data_fma)[1::2]

    def test_abs(self):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        data = self._data()
        vdata = self.load(self._data())

        abs_cases = ((-0, 0), (ninf, pinf), (pinf, pinf), (nan, nan))
        for case, desired in abs_cases:
            data_abs = [desired]*self.nlanes
            vabs = self.abs(self.setall(case))
            assert vabs == pytest.approx(data_abs, nan_ok=True)

        vabs = self.abs(self.mul(vdata, self.setall(-1)))
        assert vabs == data

    def test_sqrt(self):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        data = self._data()
        vdata = self.load(self._data())

        sqrt_cases = ((-0.0, -0.0), (0.0, 0.0), (-1.0, nan), (ninf, nan), (pinf, pinf))
        for case, desired in sqrt_cases:
            data_sqrt = [desired]*self.nlanes
            sqrt  = self.sqrt(self.setall(case))
            assert sqrt == pytest.approx(data_sqrt, nan_ok=True)

        data_sqrt = self.load([math.sqrt(x) for x in data]) # load to truncate precision
        sqrt = self.sqrt(vdata)
        assert sqrt == data_sqrt

    def test_square(self):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        data = self._data()
        vdata = self.load(self._data())
        # square
        square_cases = ((nan, nan), (pinf, pinf), (ninf, pinf))
        for case, desired in square_cases:
            data_square = [desired]*self.nlanes
            square  = self.square(self.setall(case))
            assert square == pytest.approx(data_square, nan_ok=True)

        data_square = [x*x for x in data]
        square = self.square(vdata)
        assert square == data_square

    @pytest.mark.parametrize("intrin, func", [("ceil", math.ceil),
    ("trunc", math.trunc), ("floor", math.floor), ("rint", round)])
    def test_rounding(self, intrin, func):
        """
        Test intrinsics:
            npyv_rint_##SFX
            npyv_ceil_##SFX
            npyv_trunc_##SFX
            npyv_floor##SFX
        """
        intrin_name = intrin
        intrin = getattr(self, intrin)
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        # special cases
        round_cases = ((nan, nan), (pinf, pinf), (ninf, ninf))
        for case, desired in round_cases:
            data_round = [desired]*self.nlanes
            _round = intrin(self.setall(case))
            assert _round == pytest.approx(data_round, nan_ok=True)

        for x in range(0, 2**20, 256**2):
            for w in (-1.05, -1.10, -1.15, 1.05, 1.10, 1.15):
                data = self.load([(x+a)*w for a in range(self.nlanes)])
                data_round = [func(x) for x in data]
                _round = intrin(data)
                assert _round == data_round

        # test large numbers
        for i in (
            1.1529215045988576e+18, 4.6116860183954304e+18,
            5.902958103546122e+20, 2.3611832414184488e+21
        ):
            x = self.setall(i)
            y = intrin(x)
            data_round = [func(n) for n in x]
            assert y == data_round

        # signed zero
        if intrin_name == "floor":
            data_szero = (-0.0,)
        else:
            data_szero = (-0.0, -0.25, -0.30, -0.45, -0.5)

        for w in data_szero:
            _round = self._to_unsigned(intrin(self.setall(w)))
            data_round = self._to_unsigned(self.setall(-0.0))
            assert _round == data_round

    @pytest.mark.parametrize("intrin", [
        "max", "maxp", "maxn", "min", "minp", "minn"
    ])
    def test_max_min(self, intrin):
        """
        Test intrinsics:
            npyv_max_##sfx
            npyv_maxp_##sfx
            npyv_maxn_##sfx
            npyv_min_##sfx
            npyv_minp_##sfx
            npyv_minn_##sfx
            npyv_reduce_max_##sfx
            npyv_reduce_maxp_##sfx
            npyv_reduce_maxn_##sfx
            npyv_reduce_min_##sfx
            npyv_reduce_minp_##sfx
            npyv_reduce_minn_##sfx
        """
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        chk_nan = {"xp": 1, "np": 1, "nn": 2, "xn": 2}.get(intrin[-2:], 0)
        func = eval(intrin[:3])
        reduce_intrin = getattr(self, "reduce_" + intrin)
        intrin = getattr(self, intrin)
        hf_nlanes = self.nlanes//2

        cases = (
            ([0.0, -0.0], [-0.0, 0.0]),
            ([10, -10],  [10, -10]),
            ([pinf, 10], [10, ninf]),
            ([10, pinf], [ninf, 10]),
            ([10, -10], [10, -10]),
            ([-10, 10], [-10, 10])
        )
        for op1, op2 in cases:
            vdata_a = self.load(op1*hf_nlanes)
            vdata_b = self.load(op2*hf_nlanes)
            data = func(vdata_a, vdata_b)
            simd = intrin(vdata_a, vdata_b)
            assert simd == data
            data = func(vdata_a)
            simd = reduce_intrin(vdata_a)
            assert simd == data

        if not chk_nan:
            return
        if chk_nan == 1:
            test_nan = lambda a, b: (
                b if math.isnan(a) else a if math.isnan(b) else b
            )
        else:
            test_nan = lambda a, b: (
                nan if math.isnan(a) or math.isnan(b) else b
            )
        cases = (
            (nan, 10),
            (10, nan),
            (nan, pinf),
            (pinf, nan),
            (nan, nan)
        )
        for op1, op2 in cases:
            vdata_ab = self.load([op1, op2]*hf_nlanes)
            data = test_nan(op1, op2)
            simd = reduce_intrin(vdata_ab)
            assert simd == pytest.approx(data, nan_ok=True)
            vdata_a = self.setall(op1)
            vdata_b = self.setall(op2)
            data = [data] * self.nlanes
            simd = intrin(vdata_a, vdata_b)
            assert simd == pytest.approx(data, nan_ok=True)

    def test_reciprocal(self):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        data = self._data()
        vdata = self.load(self._data())

        recip_cases = ((nan, nan), (pinf, 0.0), (ninf, -0.0), (0.0, pinf), (-0.0, ninf))
        for case, desired in recip_cases:
            data_recip = [desired]*self.nlanes
            recip = self.recip(self.setall(case))
            assert recip == pytest.approx(data_recip, nan_ok=True)

        data_recip = self.load([1/x for x in data]) # load to truncate precision
        recip = self.recip(vdata)
        assert recip == data_recip

    def test_special_cases(self):
        """
        Compare Not NaN. Test intrinsics:
            npyv_notnan_##SFX
        """
        nnan = self.notnan(self.setall(self._nan()))
        assert nnan == [0]*self.nlanes

    @pytest.mark.parametrize("intrin_name", [
        "rint", "trunc", "ceil", "floor"
    ])
    def test_unary_invalid_fpexception(self, intrin_name):
        intrin = getattr(self, intrin_name)
        for d in [float("nan"), float("inf"), -float("inf")]:
            v = self.setall(d)
            clear_floatstatus()
            intrin(v)
            assert check_floatstatus(invalid=True) == False

    @pytest.mark.parametrize('py_comp,np_comp', [
        (operator.lt, "cmplt"),
        (operator.le, "cmple"),
        (operator.gt, "cmpgt"),
        (operator.ge, "cmpge"),
        (operator.eq, "cmpeq"),
        (operator.ne, "cmpneq")
    ])
    def test_comparison_with_nan(self, py_comp, np_comp):
        pinf, ninf, nan = self._pinfinity(), self._ninfinity(), self._nan()
        mask_true = self._true_mask()

        def to_bool(vector):
            return [lane == mask_true for lane in vector]

        intrin = getattr(self, np_comp)
        cmp_cases = ((0, nan), (nan, 0), (nan, nan), (pinf, nan),
                     (ninf, nan), (-0.0, +0.0))
        for case_operand1, case_operand2 in cmp_cases:
            data_a = [case_operand1]*self.nlanes
            data_b = [case_operand2]*self.nlanes
            vdata_a = self.setall(case_operand1)
            vdata_b = self.setall(case_operand2)
            vcmp = to_bool(intrin(vdata_a, vdata_b))
            data_cmp = [py_comp(a, b) for a, b in zip(data_a, data_b)]
            assert vcmp == data_cmp

    @pytest.mark.parametrize("intrin", ["any", "all"])
    @pytest.mark.parametrize("data", (
        [float("nan"), 0],
        [0, float("nan")],
        [float("nan"), 1],
        [1, float("nan")],
        [float("nan"), float("nan")],
        [0.0, -0.0],
        [-0.0, 0.0],
        [1.0, -0.0]
    ))
    def test_operators_crosstest(self, intrin, data):
        """
        Test intrinsics:
            npyv_any_##SFX
            npyv_all_##SFX
        """
        data_a = self.load(data * self.nlanes)
        func = eval(intrin)
        intrin = getattr(self, intrin)
        desired = func(data_a)
        simd = intrin(data_a)
        assert not not simd == desired

class _SIMD_ALL(_Test_Utility):
    """
    To test all vector types at once
    """
    def test_memory_load(self):
        data = self._data()
        # unaligned load
        load_data = self.load(data)
        assert load_data == data
        # aligned load
        loada_data = self.loada(data)
        assert loada_data == data
        # stream load
        loads_data = self.loads(data)
        assert loads_data == data
        # load lower part
        loadl = self.loadl(data)
        loadl_half = list(loadl)[:self.nlanes//2]
        data_half = data[:self.nlanes//2]
        assert loadl_half == data_half
        assert loadl != data # detect overflow

    def test_memory_store(self):
        data = self._data()
        vdata = self.load(data)
        # unaligned store
        store = [0] * self.nlanes
        self.store(store, vdata)
        assert store == data
        # aligned store
        store_a = [0] * self.nlanes
        self.storea(store_a, vdata)
        assert store_a == data
        # stream store
        store_s = [0] * self.nlanes
        self.stores(store_s, vdata)
        assert store_s == data
        # store lower part
        store_l = [0] * self.nlanes
        self.storel(store_l, vdata)
        assert store_l[:self.nlanes//2] == data[:self.nlanes//2]
        assert store_l != vdata # detect overflow
        # store higher part
        store_h = [0] * self.nlanes
        self.storeh(store_h, vdata)
        assert store_h[:self.nlanes//2] == data[self.nlanes//2:]
        assert store_h != vdata  # detect overflow

    @pytest.mark.parametrize("intrin, elsizes, scale, fill", [
        ("self.load_tillz, self.load_till", (32, 64), 1, [0xffff]),
        ("self.load2_tillz, self.load2_till", (32, 64), 2, [0xffff, 0x7fff]),
    ])
    def test_memory_partial_load(self, intrin, elsizes, scale, fill):
        if self._scalar_size() not in elsizes:
            return
        npyv_load_tillz, npyv_load_till = eval(intrin)
        data = self._data()
        lanes = list(range(1, self.nlanes + 1))
        lanes += [self.nlanes**2, self.nlanes**4] # test out of range
        for n in lanes:
            load_till = npyv_load_till(data, n, *fill)
            load_tillz = npyv_load_tillz(data, n)
            n *= scale
            data_till = data[:n] + fill * ((self.nlanes-n) // scale)
            assert load_till == data_till
            data_tillz = data[:n] + [0] * (self.nlanes-n)
            assert load_tillz == data_tillz

    @pytest.mark.parametrize("intrin, elsizes, scale", [
        ("self.store_till", (32, 64), 1),
        ("self.store2_till", (32, 64), 2),
    ])
    def test_memory_partial_store(self, intrin, elsizes, scale):
        if self._scalar_size() not in elsizes:
            return
        npyv_store_till = eval(intrin)
        data = self._data()
        data_rev = self._data(reverse=True)
        vdata = self.load(data)
        lanes = list(range(1, self.nlanes + 1))
        lanes += [self.nlanes**2, self.nlanes**4]
        for n in lanes:
            data_till = data_rev.copy()
            data_till[:n*scale] = data[:n*scale]
            store_till = self._data(reverse=True)
            npyv_store_till(store_till, n, vdata)
            assert store_till == data_till

    @pytest.mark.parametrize("intrin, elsizes, scale", [
        ("self.loadn", (32, 64), 1),
        ("self.loadn2", (32, 64), 2),
    ])
    def test_memory_noncont_load(self, intrin, elsizes, scale):
        if self._scalar_size() not in elsizes:
            return
        npyv_loadn = eval(intrin)
        for stride in range(-64, 64):
            if stride < 0:
                data = self._data(stride, -stride*self.nlanes)
                data_stride = list(itertools.chain(
                    *zip(*[data[-i::stride] for i in range(scale, 0, -1)])
                ))
            elif stride == 0:
                data = self._data()
                data_stride = data[0:scale] * (self.nlanes//scale)
            else:
                data = self._data(count=stride*self.nlanes)
                data_stride = list(itertools.chain(
                    *zip(*[data[i::stride] for i in range(scale)]))
                )
            data_stride = self.load(data_stride)  # cast unsigned
            loadn = npyv_loadn(data, stride)
            assert loadn == data_stride

    @pytest.mark.parametrize("intrin, elsizes, scale, fill", [
        ("self.loadn_tillz, self.loadn_till", (32, 64), 1, [0xffff]),
        ("self.loadn2_tillz, self.loadn2_till", (32, 64), 2, [0xffff, 0x7fff]),
    ])
    def test_memory_noncont_partial_load(self, intrin, elsizes, scale, fill):
        if self._scalar_size() not in elsizes:
            return
        npyv_loadn_tillz, npyv_loadn_till = eval(intrin)
        lanes = list(range(1, self.nlanes + 1))
        lanes += [self.nlanes**2, self.nlanes**4]
        for stride in range(-64, 64):
            if stride < 0:
                data = self._data(stride, -stride*self.nlanes)
                data_stride = list(itertools.chain(
                    *zip(*[data[-i::stride] for i in range(scale, 0, -1)])
                ))
            elif stride == 0:
                data = self._data()
                data_stride = data[0:scale] * (self.nlanes//scale)
            else:
                data = self._data(count=stride*self.nlanes)
                data_stride = list(itertools.chain(
                    *zip(*[data[i::stride] for i in range(scale)])
                ))
            data_stride = list(self.load(data_stride))  # cast unsigned
            for n in lanes:
                nscale = n * scale
                llanes = self.nlanes - nscale
                data_stride_till = (
                    data_stride[:nscale] + fill * (llanes//scale)
                )
                loadn_till = npyv_loadn_till(data, stride, n, *fill)
                assert loadn_till == data_stride_till
                data_stride_tillz = data_stride[:nscale] + [0] * llanes
                loadn_tillz = npyv_loadn_tillz(data, stride, n)
                assert loadn_tillz == data_stride_tillz

    @pytest.mark.parametrize("intrin, elsizes, scale", [
        ("self.storen", (32, 64), 1),
        ("self.storen2", (32, 64), 2),
    ])
    def test_memory_noncont_store(self, intrin, elsizes, scale):
        if self._scalar_size() not in elsizes:
            return
        npyv_storen = eval(intrin)
        data = self._data()
        vdata = self.load(data)
        hlanes = self.nlanes // scale
        for stride in range(1, 64):
            data_storen = [0xff] * stride * self.nlanes
            for s in range(0, hlanes*stride, stride):
                i = (s//stride)*scale
                data_storen[s:s+scale] = data[i:i+scale]
            storen = [0xff] * stride * self.nlanes
            storen += [0x7f]*64
            npyv_storen(storen, stride, vdata)
            assert storen[:-64] == data_storen
            assert storen[-64:] == [0x7f]*64  # detect overflow

        for stride in range(-64, 0):
            data_storen = [0xff] * -stride * self.nlanes
            for s in range(0, hlanes*stride, stride):
                i = (s//stride)*scale
                data_storen[s-scale:s or None] = data[i:i+scale]
            storen = [0x7f]*64
            storen += [0xff] * -stride * self.nlanes
            npyv_storen(storen, stride, vdata)
            assert storen[64:] == data_storen
            assert storen[:64] == [0x7f]*64  # detect overflow
        # stride 0
        data_storen = [0x7f] * self.nlanes
        storen = data_storen.copy()
        data_storen[0:scale] = data[-scale:]
        npyv_storen(storen, 0, vdata)
        assert storen == data_storen

    @pytest.mark.parametrize("intrin, elsizes, scale", [
        ("self.storen_till", (32, 64), 1),
        ("self.storen2_till", (32, 64), 2),
    ])
    def test_memory_noncont_partial_store(self, intrin, elsizes, scale):
        if self._scalar_size() not in elsizes:
            return
        npyv_storen_till = eval(intrin)
        data = self._data()
        vdata = self.load(data)
        lanes = list(range(1, self.nlanes + 1))
        lanes += [self.nlanes**2, self.nlanes**4]
        hlanes = self.nlanes // scale
        for stride in range(1, 64):
            for n in lanes:
                data_till = [0xff] * stride * self.nlanes
                tdata = data[:n*scale] + [0xff] * (self.nlanes-n*scale)
                for s in range(0, hlanes*stride, stride)[:n]:
                    i = (s//stride)*scale
                    data_till[s:s+scale] = tdata[i:i+scale]
                storen_till = [0xff] * stride * self.nlanes
                storen_till += [0x7f]*64
                npyv_storen_till(storen_till, stride, n, vdata)
                assert storen_till[:-64] == data_till
                assert storen_till[-64:] == [0x7f]*64  # detect overflow

        for stride in range(-64, 0):
            for n in lanes:
                data_till = [0xff] * -stride * self.nlanes
                tdata = data[:n*scale] + [0xff] * (self.nlanes-n*scale)
                for s in range(0, hlanes*stride, stride)[:n]:
                    i = (s//stride)*scale
                    data_till[s-scale:s or None] = tdata[i:i+scale]
                storen_till = [0x7f]*64
                storen_till += [0xff] * -stride * self.nlanes
                npyv_storen_till(storen_till, stride, n, vdata)
                assert storen_till[64:] == data_till
                assert storen_till[:64] == [0x7f]*64  # detect overflow

        # stride 0
        for n in lanes:
            data_till = [0x7f] * self.nlanes
            storen_till = data_till.copy()
            data_till[0:scale] = data[:n*scale][-scale:]
            npyv_storen_till(storen_till, 0, n, vdata)
            assert storen_till == data_till

    @pytest.mark.parametrize("intrin, table_size, elsize", [
        ("self.lut32", 32, 32),
        ("self.lut16", 16, 64)
    ])
    def test_lut(self, intrin, table_size, elsize):
        """
        Test lookup table intrinsics:
            npyv_lut32_##sfx
            npyv_lut16_##sfx
        """
        if elsize != self._scalar_size():
            return
        intrin = eval(intrin)
        idx_itrin = getattr(self.npyv, f"setall_u{elsize}")
        table = range(0, table_size)
        for i in table:
            broadi = self.setall(i)
            idx = idx_itrin(i)
            lut = intrin(table, idx)
            assert lut == broadi

    def test_misc(self):
        broadcast_zero = self.zero()
        assert broadcast_zero == [0] * self.nlanes
        for i in range(1, 10):
            broadcasti = self.setall(i)
            assert broadcasti == [i] * self.nlanes

        data_a, data_b = self._data(), self._data(reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        # py level of npyv_set_* don't support ignoring the extra specified lanes or
        # fill non-specified lanes with zero.
        vset = self.set(*data_a)
        assert vset == data_a
        # py level of npyv_setf_* don't support ignoring the extra specified lanes or
        # fill non-specified lanes with the specified scalar.
        vsetf = self.setf(10, *data_a)
        assert vsetf == data_a

        # We're testing the sanity of _simd's type-vector,
        # reinterpret* intrinsics itself are tested via compiler
        # during the build of _simd module
        sfxes = ["u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64"]
        if self.npyv.simd_f64:
            sfxes.append("f64")
        if self.npyv.simd_f32:
            sfxes.append("f32")
        for sfx in sfxes:
            vec_name = getattr(self, "reinterpret_" + sfx)(vdata_a).__name__
            assert vec_name == "npyv_" + sfx

        # select & mask operations
        select_a = self.select(self.cmpeq(self.zero(), self.zero()), vdata_a, vdata_b)
        assert select_a == data_a
        select_b = self.select(self.cmpneq(self.zero(), self.zero()), vdata_a, vdata_b)
        assert select_b == data_b

        # test extract elements
        assert self.extract0(vdata_b) == vdata_b[0]

        # cleanup intrinsic is only used with AVX for
        # zeroing registers to avoid the AVX-SSE transition penalty,
        # so nothing to test here
        self.npyv.cleanup()

    def test_reorder(self):
        data_a, data_b  = self._data(), self._data(reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)
        # lower half part
        data_a_lo = data_a[:self.nlanes//2]
        data_b_lo = data_b[:self.nlanes//2]
        # higher half part
        data_a_hi = data_a[self.nlanes//2:]
        data_b_hi = data_b[self.nlanes//2:]
        # combine two lower parts
        combinel = self.combinel(vdata_a, vdata_b)
        assert combinel == data_a_lo + data_b_lo
        # combine two higher parts
        combineh = self.combineh(vdata_a, vdata_b)
        assert combineh == data_a_hi + data_b_hi
        # combine x2
        combine = self.combine(vdata_a, vdata_b)
        assert combine == (data_a_lo + data_b_lo, data_a_hi + data_b_hi)

        # zip(interleave)
        data_zipl = self.load([
            v for p in zip(data_a_lo, data_b_lo) for v in p
        ])
        data_ziph = self.load([
            v for p in zip(data_a_hi, data_b_hi) for v in p
        ])
        vzip = self.zip(vdata_a, vdata_b)
        assert vzip == (data_zipl, data_ziph)
        vzip = [0]*self.nlanes*2
        self._x2("store")(vzip, (vdata_a, vdata_b))
        assert vzip == list(data_zipl) + list(data_ziph)

        # unzip(deinterleave)
        unzip = self.unzip(data_zipl, data_ziph)
        assert unzip == (data_a, data_b)
        unzip = self._x2("load")(list(data_zipl) + list(data_ziph))
        assert unzip == (data_a, data_b)

    def test_reorder_rev64(self):
        # Reverse elements of each 64-bit lane
        ssize = self._scalar_size()
        if ssize == 64:
            return
        data_rev64 = [
            y for x in range(0, self.nlanes, 64//ssize)
              for y in reversed(range(x, x + 64//ssize))
        ]
        rev64 = self.rev64(self.load(range(self.nlanes)))
        assert rev64 == data_rev64

    def test_reorder_permi128(self):
        """
        Test permuting elements for each 128-bit lane.
        npyv_permi128_##sfx
        """
        ssize = self._scalar_size()
        if ssize < 32:
            return
        data = self.load(self._data())
        permn = 128//ssize
        permd = permn-1
        nlane128 = self.nlanes//permn
        shfl = [0, 1] if ssize == 64 else [0, 2, 4, 6]
        for i in range(permn):
            indices = [(i >> shf) & permd for shf in shfl]
            vperm = self.permi128(data, *indices)
            data_vperm = [
                data[j + (e & -permn)]
                for e, j in enumerate(indices*nlane128)
            ]
            assert vperm == data_vperm

    @pytest.mark.parametrize('func, intrin', [
        (operator.lt, "cmplt"),
        (operator.le, "cmple"),
        (operator.gt, "cmpgt"),
        (operator.ge, "cmpge"),
        (operator.eq, "cmpeq")
    ])
    def test_operators_comparison(self, func, intrin):
        if self._is_fp():
            data_a = self._data()
        else:
            data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)
        intrin = getattr(self, intrin)

        mask_true = self._true_mask()
        def to_bool(vector):
            return [lane == mask_true for lane in vector]

        data_cmp = [func(a, b) for a, b in zip(data_a, data_b)]
        cmp = to_bool(intrin(vdata_a, vdata_b))
        assert cmp == data_cmp

    def test_operators_logical(self):
        if self._is_fp():
            data_a = self._data()
        else:
            data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        if self._is_fp():
            data_cast_a = self._to_unsigned(vdata_a)
            data_cast_b = self._to_unsigned(vdata_b)
            cast, cast_data = self._to_unsigned, self._to_unsigned
        else:
            data_cast_a, data_cast_b = data_a, data_b
            cast, cast_data = lambda a: a, self.load

        data_xor = cast_data([a ^ b for a, b in zip(data_cast_a, data_cast_b)])
        vxor = cast(self.xor(vdata_a, vdata_b))
        assert vxor == data_xor

        data_or  = cast_data([a | b for a, b in zip(data_cast_a, data_cast_b)])
        vor  = cast(getattr(self, "or")(vdata_a, vdata_b))
        assert vor == data_or

        data_and = cast_data([a & b for a, b in zip(data_cast_a, data_cast_b)])
        vand = cast(getattr(self, "and")(vdata_a, vdata_b))
        assert vand == data_and

        data_not = cast_data([~a for a in data_cast_a])
        vnot = cast(getattr(self, "not")(vdata_a))
        assert vnot == data_not

        if self.sfx not in ("u8"):
            return
        data_andc = [a & ~b for a, b in zip(data_cast_a, data_cast_b)]
        vandc = cast(getattr(self, "andc")(vdata_a, vdata_b))
        assert vandc == data_andc

    @pytest.mark.parametrize("intrin", ["any", "all"])
    @pytest.mark.parametrize("data", (
        [1, 2, 3, 4],
        [-1, -2, -3, -4],
        [0, 1, 2, 3, 4],
        [0x7f, 0x7fff, 0x7fffffff, 0x7fffffffffffffff],
        [0, -1, -2, -3, 4],
        [0],
        [1],
        [-1]
    ))
    def test_operators_crosstest(self, intrin, data):
        """
        Test intrinsics:
            npyv_any_##SFX
            npyv_all_##SFX
        """
        data_a = self.load(data * self.nlanes)
        func = eval(intrin)
        intrin = getattr(self, intrin)
        desired = func(data_a)
        simd = intrin(data_a)
        assert not not simd == desired

    def test_conversion_boolean(self):
        bsfx = "b" + self.sfx[1:]
        to_boolean = getattr(self.npyv, "cvt_%s_%s" % (bsfx, self.sfx))
        from_boolean = getattr(self.npyv, "cvt_%s_%s" % (self.sfx, bsfx))

        false_vb = to_boolean(self.setall(0))
        true_vb  = self.cmpeq(self.setall(0), self.setall(0))
        assert false_vb != true_vb

        false_vsfx = from_boolean(false_vb)
        true_vsfx = from_boolean(true_vb)
        assert false_vsfx != true_vsfx

    def test_conversion_expand(self):
        """
        Test expand intrinsics:
            npyv_expand_u16_u8
            npyv_expand_u32_u16
        """
        if self.sfx not in ("u8", "u16"):
            return
        totype = self.sfx[0]+str(int(self.sfx[1:])*2)
        expand = getattr(self.npyv, f"expand_{totype}_{self.sfx}")
        # close enough from the edge to detect any deviation
        data  = self._data(self._int_max() - self.nlanes)
        vdata = self.load(data)
        edata = expand(vdata)
        # lower half part
        data_lo = data[:self.nlanes//2]
        # higher half part
        data_hi = data[self.nlanes//2:]
        assert edata == (data_lo, data_hi)

    def test_arithmetic_subadd(self):
        if self._is_fp():
            data_a = self._data()
        else:
            data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        # non-saturated
        data_add = self.load([a + b for a, b in zip(data_a, data_b)]) # load to cast
        add  = self.add(vdata_a, vdata_b)
        assert add == data_add
        data_sub  = self.load([a - b for a, b in zip(data_a, data_b)])
        sub  = self.sub(vdata_a, vdata_b)
        assert sub == data_sub

    def test_arithmetic_mul(self):
        if self.sfx in ("u64", "s64"):
            return

        if self._is_fp():
            data_a = self._data()
        else:
            data_a = self._data(self._int_max() - self.nlanes)
        data_b = self._data(self._int_min(), reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        data_mul = self.load([a * b for a, b in zip(data_a, data_b)])
        mul = self.mul(vdata_a, vdata_b)
        assert mul == data_mul

    def test_arithmetic_div(self):
        if not self._is_fp():
            return

        data_a, data_b = self._data(), self._data(reverse=True)
        vdata_a, vdata_b = self.load(data_a), self.load(data_b)

        # load to truncate f64 to precision of f32
        data_div = self.load([a / b for a, b in zip(data_a, data_b)])
        div = self.div(vdata_a, vdata_b)
        assert div == data_div

    def test_arithmetic_intdiv(self):
        """
        Test integer division intrinsics:
            npyv_divisor_##sfx
            npyv_divc_##sfx
        """
        if self._is_fp():
            return

        int_min = self._int_min()
        def trunc_div(a, d):
            """
            Divide towards zero works with large integers > 2^53,
            and wrap around overflow similar to what C does.
            """
            if d == -1 and a == int_min:
                return a
            sign_a, sign_d = a < 0, d < 0
            if a == 0 or sign_a == sign_d:
                return a // d
            return (a + sign_d - sign_a) // d + 1

        data = [1, -int_min]  # to test overflow
        data += range(0, 2**8, 2**5)
        data += range(0, 2**8, 2**5-1)
        bsize = self._scalar_size()
        if bsize > 8:
            data += range(2**8, 2**16, 2**13)
            data += range(2**8, 2**16, 2**13-1)
        if bsize > 16:
            data += range(2**16, 2**32, 2**29)
            data += range(2**16, 2**32, 2**29-1)
        if bsize > 32:
            data += range(2**32, 2**64, 2**61)
            data += range(2**32, 2**64, 2**61-1)
        # negate
        data += [-x for x in data]
        for dividend, divisor in itertools.product(data, data):
            divisor = self.setall(divisor)[0]  # cast
            if divisor == 0:
                continue
            dividend = self.load(self._data(dividend))
            data_divc = [trunc_div(a, divisor) for a in dividend]
            divisor_parms = self.divisor(divisor)
            divc = self.divc(dividend, divisor_parms)
            assert divc == data_divc

    def test_arithmetic_reduce_sum(self):
        """
        Test reduce sum intrinsics:
            npyv_sum_##sfx
        """
        if self.sfx not in ("u32", "u64", "f32", "f64"):
            return
        # reduce sum
        data = self._data()
        vdata = self.load(data)

        data_sum = sum(data)
        vsum = self.sum(vdata)
        assert vsum == data_sum

    def test_arithmetic_reduce_sumup(self):
        """
        Test extend reduce sum intrinsics:
            npyv_sumup_##sfx
        """
        if self.sfx not in ("u8", "u16"):
            return
        rdata = (0, self.nlanes, self._int_min(), self._int_max()-self.nlanes)
        for r in rdata:
            data = self._data(r)
            vdata = self.load(data)
            data_sum = sum(data)
            vsum = self.sumup(vdata)
            assert vsum == data_sum

    def test_mask_conditional(self):
        """
        Conditional addition and subtraction for all supported data types.
        Test intrinsics:
            npyv_ifadd_##SFX, npyv_ifsub_##SFX
        """
        vdata_a = self.load(self._data())
        vdata_b = self.load(self._data(reverse=True))
        true_mask  = self.cmpeq(self.zero(), self.zero())
        false_mask = self.cmpneq(self.zero(), self.zero())

        data_sub = self.sub(vdata_b, vdata_a)
        ifsub = self.ifsub(true_mask, vdata_b, vdata_a, vdata_b)
        assert ifsub == data_sub
        ifsub = self.ifsub(false_mask, vdata_a, vdata_b, vdata_b)
        assert ifsub == vdata_b

        data_add = self.add(vdata_b, vdata_a)
        ifadd = self.ifadd(true_mask, vdata_b, vdata_a, vdata_b)
        assert ifadd == data_add
        ifadd = self.ifadd(false_mask, vdata_a, vdata_b, vdata_b)
        assert ifadd == vdata_b

        if not self._is_fp():
            return
        data_div = self.div(vdata_b, vdata_a)
        ifdiv = self.ifdiv(true_mask, vdata_b, vdata_a, vdata_b)
        assert ifdiv == data_div
        ifdivz = self.ifdivz(true_mask, vdata_b, vdata_a)
        assert ifdivz == data_div
        ifdiv = self.ifdiv(false_mask, vdata_a, vdata_b, vdata_b)
        assert ifdiv == vdata_b
        ifdivz = self.ifdivz(false_mask, vdata_a, vdata_b)
        assert ifdivz == self.zero()

bool_sfx = ("b8", "b16", "b32", "b64")
int_sfx = ("u8", "s8", "u16", "s16", "u32", "s32", "u64", "s64")
fp_sfx  = ("f32", "f64")
all_sfx = int_sfx + fp_sfx
tests_registry = {
    bool_sfx: _SIMD_BOOL,
    int_sfx : _SIMD_INT,
    fp_sfx  : _SIMD_FP,
    ("f32",): _SIMD_FP32,
    ("f64",): _SIMD_FP64,
    all_sfx : _SIMD_ALL
}
for target_name, npyv in targets.items():
    simd_width = npyv.simd if npyv else ''
    pretty_name = target_name.split('__') # multi-target separator
    if len(pretty_name) > 1:
        # multi-target
        pretty_name = f"({' '.join(pretty_name)})"
    else:
        pretty_name = pretty_name[0]

    skip = ""
    skip_sfx = dict()
    if not npyv:
        skip = f"target '{pretty_name}' isn't supported by current machine"
    elif not npyv.simd:
        skip = f"target '{pretty_name}' isn't supported by NPYV"
    else:
        if not npyv.simd_f32:
            skip_sfx["f32"] = f"target '{pretty_name}' "\
                               "doesn't support single-precision"
        if not npyv.simd_f64:
            skip_sfx["f64"] = f"target '{pretty_name}' doesn't"\
                               "support double-precision"

    for sfxes, cls in tests_registry.items():
        for sfx in sfxes:
            skip_m = skip_sfx.get(sfx, skip)
            inhr = (cls,)
            attr = dict(npyv=targets[target_name], sfx=sfx, target_name=target_name)
            tcls = type(f"Test{cls.__name__}_{simd_width}_{target_name}_{sfx}", inhr, attr)
            if skip_m:
                pytest.mark.skip(reason=skip_m)(tcls)
            globals()[tcls.__name__] = tcls

Youez - 2016 - github.com/yon3zu
LinuXploit